
Modularity, Reuse and Hierarchy: Measuring
Complexity by Measuring Structure and

Organization

Gregory S. Hornby1

University of California Santa Cruz1

NASA Ames Research Center, Mail Stop 269-3
Moffett Field, CA 94035-1000
hornby@email.arc.nasa.gov

Abstract

To develop better complexity measures, a reasonable approach is to base them on those
principles of design that designers use. Modularity, reuse and hierarchy (MR&H) have
been identified by engineers as useful principles for designing complex systems, and these
characteristics can be seen in Nature. Here we develop metrics for each of MR&H, and then
use them to develop several metrics ofstructure and organization. Further, we propose to
evaluate complexity measures both empirically and on a set of abstract object-construction
examples. After applying these tests to a handful of previously defined complexity mea-
sures, as well as ones we define here, we find that only two of our measures pass both sets
of tests.

Key words: design, evolutionary algorithm, evolutionary design, complexity, structure,
organization

1 Introduction

Over the years various methods have been proposed for measuring the complex-
ity of an object, such as Algorithmic Information Content (AIC) [1–3], Logical
Depth [4], and Sophistication [5]. These metrics vary in howintuitively they mea-
sure complexity, with definite cases in which they are counter intuitive. For ex-
ample, consider two strings (or computer programs) of equallength, with the first
consisting of a random sequence of symbols and the second having hierarchies of
regularities. The AIC of the first string will be higher than the second whereas we
are intuitively inclined to think of the second string as more complex. In addition,
it is not always clear that what is being measured is a meaningful property of an
object. Of interest is the development of a better method formeasuring complexity

Preprint submitted to Complexity 22 August 2007

that produces results that are more intuitive and is a measure of meaningful design
characteristics.

One approach to developing better complexity measures is totake the view that
there are fundamental principles of scalable design and that the complexity of an
object is well correlated with the degree to which it has these characteristics. Con-
tinuing along this line of thought, then to develop better complexity measures we
should look to design-related disciplines to see which characteristics have been
identified as necessary for scalable design. In engineeringand software develop-
ment sophisticated artifacts are achieved by exploiting the principles of modularity,
reuse, and hierarchy (MR&H) [6–8], and these characteristics can also be seen in
the artifacts of the natural world. Assuming that the principles of MR&H are neces-
sary to achieve scalability, then a meaningful and intuitive set of complexity metrics
would be based on measures of MR&H.

Here we define measures of MR&H, as well as several variations of combining
them into a single metric ofstructure and organizationand compare them against
existing measures of complexity. To define metrics of MR&H in away that gen-
eralizes across different design domains, we need an abstract model of an object
that can be analyzed. While the field of Complexity has a tradition of working with
string-based programs that produce strings, here we use graph structures since they
are a more powerful data structure than are strings. An object can be encoded by a
graph-structureddesign programwhich, when executed or compiled out, produces
a tree-structuredassembly procedurefor the object. It is on an object’s design pro-
gram and assembly procedure that we define our metrics.

To demonstrate the usefulness of using MR&H to measure complexity, we pro-
pose two types of tests for evaluating a complexity measure and apply them to our
measures as well as to a handful of existing ones. First, complexity measures can
be compared by using an automated design system to create a number of designs
for various sizes of a scalable design problem. When applied to the best designs
of each “size” of the problem, we expect a good complexity measure to produce
monotonically increasing values as the problem size scalesup. Second, complexity
measures can be compared on abstract examples to determine whether or not they
have certain properties. We suggest three such properties:random designs should
score low; combining an object with itself should produce atmost a small increase
in complexity; and an object built from joining two sub-objects should not be much
more complex than either. After applying these tests to the different complexity
measures we find that only two of our measures of structure andorganization pass
both sets of tests.

The rest of this paper is organized as follows. First, we describe our model of de-
sign representations (in Section 2), since this is needed todefine the metrics operate
on them. Then we present our measures of Modularity, Reuse andHierarchy (in
Section 3), followed by several methods for combining thesemeasures into a com-

2

posite measure of structure and organization (in Section 4), and then describe the
other measures of complexity we compare against (in Section5). Next we describe
our experimental setup for evaluating the different measures on different sizes of a
design problem (in Section 6) and present the results of applying this empirical test
to the different complexity measures (in Section 7). We thenpropose three prop-
erties which a complexity measure should have and use this asa second test with
which we evaluate complexity measures (in Section 8). Based on the results from
evaluating the different complexity measures on our two tests we conclude that the
best measures are two of our measures of structure and organization. Finally we
close with a discussion (in Section 9) and a summary of this work (in Section 10).

2 Design Encodings are Programs

Before defining the various complexity measures, it is worth describing the paradigm
under which these measurements are taken. To define metrics of a design or artifact
in a way that generalizes across various types of domains, wetake measurements
on the data structures that encode these artifacts rather than take measurements of
actual fabricated artifacts. These data structures can be thought of as a forest of
tree-structured design-construction operators, in whicheach tree describes the as-
sembly of some parts, or sub-assemblies, into a larger one (see Figure 1(a)). Since
this data-structure defines how the artifact is “built,” we consider it adesign pro-
gram for building it. Just as computer programs have procedure calls and iterative
loops, so too can design programs have analogous constructs. If we add links to the
trees to represent the jumps in control-flow of these procedure calls and iterative
loops, this results in this forest of trees becoming one large, inter-connected graph
comprising of multiple sub-graphs for each sub-assembly, and sub-sub-graphs for
the sub-sub-assemblies, and so on (see Figure 1(b)). Continuing with the “a design
encoding is really a design program” metaphor, these graph-structured design pro-
grams can be executed to produce a tree of design-construction operators, called an
assembly procedure.

Viewing an object as a graph differs significantly from what is commonly done
in the field of Complexity, which is to examine both the object and the program
which generates the object as strings, which are typically the input and output of a
Turing Machine. Reducing an object and its generating program to strings removes
the connections which describe couplings and structure andit also severely limits
what can be measured. For example, if a procedure in a design program is called
from multiple locations this can be represented in a graph byusing links from the
calling nodes to the head of the procedure, whereas in a string there is no way to
encode this. Similarly, if an assembly in a design has three sub-assemblies attached
to it, a graph-structured representation can encode this asa node with three nodes
attached to it, whereas with a string-based representationthis information cannot
be encoded without using labeled nodes with special meanings.

3

(a) (b)

Fig. 1. A graphical rendition of a design program in which different shapes represent differ-
ent types of operators: (a) the tree structured procedures in the program; (b) the tree-struc-
tured procedures in the program with the links added to show procedure calls and the extent
of iterative loops.

This paradigm of considering a design as consisting of threeparts – design pro-
gram, assembly procedure and the resulting design – is a kindof extension of
the traditional paradigm for investigating ideas in Complexity. Existing complexity
measures commonly measure the complexity of a string of symbols by measuring
attributes of the minimal, or near minimal, program that generates it. This two part
paradigm of a program and the string it generates corresponds with the first two
parts (design program and assembly procedure) of the model described here. The
third part is added by using the string of symbols as a linear assembly procedure in
which the symbols are used as operators for “constructing” adesign, much like the
design-construction system described in Section 6.2.

3 Measuring Modularity, Reuse and Hierarchy

The method for measuring MR&H comes out of what is meant by these terms.
Modularity is defined as an encapsulated group of elements that can be manipulated
as a unit,reuseis a repetition or similarity in a design, andhierarchyis the number
of layers of encapsulated modules in the structure of a design.

Each of MR&H aids the scalability of evolutionary design systems in different
ways. For larger and more sophisticated artifacts, being able to hierarchically cre-
ate levels of nested modules is needed to break things down sono one module is
too large and sophisticated to evolve on its own. This is analogous to Simon’s para-
ble of two watchmakers, which illustrated how the ability tohierarchically create
and manipulate modules greatly improves the rate at which more structurally so-
phisticated artifacts can be built [9]. Being able to reuse design modules is helpful
in two ways. First, a module that is useful in one part of the design may be useful
somewhere else, so creating modules is a way of scaling the basic unit of variation.
Second, reuse of a parameter, assembly or function is a way ofcapturing design
dependencies into a single location in the design program thereby enabling design-

4

ers (or search algorithms) to more easily make coordinated changes in the design
[10,11]. We now define our measures of MR&H.

Modularity: The modularity value of a design is a count of the number of struc-
tural modules in it, which we define as an encapsulated group of elements in the
design program that can be manipulated as a unit. Since a label to a procedure can
be manipulated as a unit, each procedure in the design program counts as one to-
ward the encoded modularity value. In addition, the abilityto change the iteration
counter means that the group of encoded elements inside an iterative block also
constitutes a module, hence each iterative block is one module in the program. As
well as counting modules in the design program (which we label Mp, for modules
in the program) we can also count the number of occurrences ofmodules in the
design itself,Md. In this case each procedure call counts as one toward the design
modularity value and each iteration of an iterative block adds one to the modularity
value of the design.

Reuse: is a measure of the average number of times elements of the design pro-
gram are used to create the resulting design. Here we measurethree types of reuse.
The first, overall reuse,Ra, is calculated by dividing the number of symbols in an
object’s assembly procedure by the number of symbols in the design program that
generates it. Second, reuse of build symbols,Rb, is the average number of times
a design constructing operator – as opposed to an operator that is a conditional,
iterative statement or procedure call – is used. Third, reuse of modules,Rm, is the
average number of times modules are reused in the design and is calculated by
dividing Md by Mp.

Hierarchy: The hierarchy of a design is a measure of the number of nestedlayers
of modules, such as through iteration or abstraction. A design encoding with no
modules has a hierarchy of zero. Each nested module, whethera successful call to
a labeled procedure or a non-empty iterative block, increases the hierarchy value by
one. This is similar to measuring the depth of an object’s assembly sequence [12],
but whereas there the measure is of basic steps in constructing an object, here we
are measuring steps of nested modules.

As defined, these measures of MR&H apply to any programming language, and
are thus comparable on the same systems as existing complexity measures, such as
AIC, Logical Depth and Sophistication. These measures can also be generalized to
any representation with a hierarchical graph structure, such as the set of parts used
to describe a complex assembly in a CAD/CAM package, and any system that can
be described as a hierarchical graph structure, such as a regular expression, context-
free grammar or unrestricted grammar. For example, the regular expression(0 +
10)∗((11)∗ + 001)∗ can be though of as a design program consisting of 19 symbols
with the modules0, 10, 11, 001, 0+10, and(11)∗ +001. Similarly, the modularity,
reuse and hierarchy scores of strings in this language couldbe measured. The string
1010100011111001 is in this language and consists of three occurrences of module

5

10 and three occurrences of module(11)∗ + 001, one of which is two occurrences
of module11 and the other two are occurrences of module001. It has a design
modularity,Md, of 10, an hierarchy,H, of 2 and its reuse scores are anRa of 0.84,
anRb of 2.0 and anRm of 1.67.

In the rest of this paper we useMRH to refer to the metrics for modularity, reuse
and hierarchy and MR&H to refer to the characteristics of modularity, reuse and
hierarchy. Next, in Section 4 we discuss how to combine thesemeasures ofMRH
into a single measure, which we call a measure ofstructure and organization.

4 A Single Metric for Structure and Organization

Each of the proposed metrics of modularity, reuse and hierarchy measure different
aspects of the structure and organization of an object. Of interest is combining the
scores of these three metrics into a measure of structure andorganization with a
single value.

One method for combining the three scores ofMRH into a single value is by treating
each of them as the orthogonal axes of a 3D system and then using the length of the
vector from the origin as the measure of structure and organization of an object.

SO1 =
√

M2
p + R2

a + H2 (1)

SO2 =
√

M2
p + R2

m + H2 (2)

A problem with this approach is that the different metrics vary in their range, and
a small change in hierarchy will generally have little impact on the overall struc-
ture and organization measure of an object since hierarchy usually has the smallest
value.

Another method for combining the threeMRH scores is to multiply them together.

SO3 = Mp × Ra × H (3)
SO4 = Mp × Rm × H (4)

This approach has the desirable property that a change ofX% in any one of the
MRH values will result in the sameX% change in the overall measure of structure
and organization.

Of concern with the above approaches to measuring structureand organization is
that they do not take into account the size of the object or thesize of the program
that generates it. For example, a large object with a small percentage of its informa-
tion organized into some structure can out score a much smaller object which has a

6

small, maximally-organized, design program. Two ways to normalize structure and
organization scores for size are to divide by the size of the object and to divide by
the size of the design program (which is the amount of information in the object).

SO5 =
Mp × Ra × H

DesignSize
(5)

SO6 =
Mp × Rm × H

DesignSize
(6)

SO7 =
Mp × Ra × H

AIC
(7)

SO8 =
Mp × Rm × H

AIC
(8)

5 Other Complexity Metrics

To demonstrate that theMRH metrics of structure and organization are meaning-
ful we evaluate them, and a handful of other complexity measures, on two types
of tests. Measures that were selected are those that are relatively straightforward
to compute or approximate and which we thought had a reasonable chance at be-
ing relevant. Examples of measures we left out are: Arithmetic Complexity [13],
Cognitive Complexity [14], Dimension of Attractor [15], Easeof Decomposition
[16], Logical Complexity [13], Mutual Information [17], Number of Inequivalent
Descriptions, Number of States in a Finite Automata [18], Number of Variables,
and Thermodynamic Depth [19]. All of these measures, as wellas many others, are
reviewed in [16]. In addition we also add some additional measures of to serve as
a kind of control variables. We now review the different complexity metrics which
we evaluate.

Algorithmic Information Content (AIC) is one of most well known and influ-
ential complexity metrics, having been used as a starting point for many others,
and was invented separately by Chaitin [1], Kolmogorov [2], and Solomonoff [3].
The AIC of a given string is the length, in number of symbols, of the shortest pro-
gram that produces that string. Other complexity measures are very similar, such as
counting the number of lines of code in a computer program [16]. Here we measure
AIC as the number of symbols in the design program.

Design Size (DS) is a measure of the size of what is encoded by the design pro-
gram, and here we measure this by counting the number of symbols in the assem-
bly procedure. This contrasts with AIC, which counts the number of symbols in the
program that generates the assembly procedure.

Logical Depth is a measure of the value of information and, for a given string, it is
the minimum running time of a near-incompressible program that produces it [4].

7

This can also be considered computational complexity, in that it is a measure of
the amount of computational time that is spent to compute theassembly procedure.
In our experiments we calculate Logical Depth as the number of symbols that are
processed in generating the assembly procedure from the design program.

Sophistication is a measure of the structure of a string by counting the number of
control symbols in the program used to generate it [5]. In trying to measure the
structure of a string, the goal for this measure is similar tothe goal of theMRH
metrics. Here we calculate the sophistication of a design bycounting the number
of control symbols – that is, procedure symbols, loop symbols, and conditionals –
in the program that is used to generate it.

Number of Build Symbols, whereas Sophistication is a measure of structure by
counting the number of control symbols, we propose a countermeasure which is a
count of the number of non-control symbols in the program that is used to generate
the assembly procedure. In our system, these non-control symbols are the operators
that are used by the design-constructing interpreter and wecall thembuild symbols,
since they are used to generate a design.

Grammar Size: any string that has a pattern can be expressed as being generated
by a grammar. Simple strings with simple patterns generallyhave a simple gram-
mar, thus the size of the grammar needed to produce a string serves as a measure of
complexity [16]. The representation used here can be thought of as a kind of gram-
mar, with different procedures being different grammar rules. Thus to calculate the
grammar size of an assembly procedure we use the design program that produces
it as the grammar and count the number of production rules in it.

Connectivity: more complex systems have greater inter-connectedness between
components, thus the connectivity of a system can be used as acomplexity measure
[16]. For a graph-structure, its connectivity is the maximum number of edges that
can be removed before it is split into two non-connected graphs. To calculate the
connectivity of a design we use the connectivity of the design program (in graph
form) that is used to generate it.

Number of Branches: related to the previous measure of complexity, we propose
another measure of the structure of a graph: a count of numberof nodes which are
branch nodes (nodes which have two or more children). Strings have a very simple
structure with no branching nodes, whereas a fully balancedbinary tree will have
roughly lg(n) branch nodes. We apply this measure to the assembly procedure.

Height: is the maximum number of edges that can be traversed in goingfrom the
root of the tree to a leaf node. Unlike other complexity metrics, which are based on
strings, this measure is for trees. This measure of complexity is related to work in
formal language theory in which ideas for measuring ease of comprehension are to
measure the depth of postponed symbols [20] or depth and nesting, called Syntactic
Depth [21]. We apply this measure to the assembly procedure.

8

6 Experimental Setup for the Empirical Test

The first test on which we evaluate complexity measures is to empirically test them
on different “sizes” of a class of designs. For this test we use an an evolutionary
algorithm [22,23] to evolve designs for different sizes of adesign problem and then
apply the different measures to the best evolved designs of each size. This test uses
the assumption that as we scale up a design problem, a more “complex” design is
needed to produce good designs for it. Consequently, for thistest a good complexity
measure is one whose values grow monotonically with the increase in design size.
We now describe the test problem and the evolutionary designsystem, GENRE,
used for these experiments.

6.1 Test Problem

For the empirical test, the design problem we use is that of producing a three di-
mensional table out of cubes. A table is evaluated by first determining whether or
not it will fall over, which is done by testing whether or not its center of mass falls
within its footprint. Tables which are found to fall over aregiven a fitness score
of zero, and tables which are found to stand up are further evaluated using a func-
tion of their height, surface structure, stability and the number of excess cubes used
[24,11]. Height is the number of cubes above the ground. Surface structure is the
number of cubes at the maximum height. Stability is a function of the volume of the
table, and is calculated by summing the area at each layer of the table. Maximizing
height, surface structure and stability typically resultsin table designs that are solid
volumes, thus a measure of excess cubes is used to reward designs that use fewer
bricks,

fheight = the height of the highest cube,Ymax. (9)
fsurface = the number of cubes atYmax. (10)

fstability =
Ymax
∑

y=0

farea(y) (11)

farea(y) = area in the convex hull at heighty. (12)
fexcess = number of cubes not on the surface. (13)

To produce a single fitness score for a design these five criteria are combined to-
gether:

fitness= fheight × fsurface × fstability/fexcess (14)

This problem can be scaled by varying the size of the grid. In our experiments we
perform runs with sizes from20 × 20 × 20 to 80 × 80 × 80.

9

6.2 Representation

To encode tables, the representation used by GENRE is a kind ofprogram which
specifies how to construct a table. This program consists of aforest of tree-structured
procedures in which each node in the tree is an operator, and operators can be pro-
cedure calls, control-flow operators, or design construction operators. Designs are
created by compiling a design program into an assembly procedure of construction
operators and then executing this assembly procedure to generate the artifact.

The following example of a design encoded with GENRE’s representation consists
of two labeled procedures,Proc 0 andProc 1, each with two parameters, and
the initial call to the program,Proc 0(4.0,2.0):

Proc 0(4.0, 2.0) :

Proc 0(n0, n1) :

n0 > 3.0 → rotate-z(1) [Proc0(1.0,2.0) repeat(2) [forward(n1/2) [
repeat-end [Proc1(n0+2.0,2.0) [forward(1)]] [] []]]]

true → rotate-z(1) [repeat(4) [rotate-y(1) [forward(n1+1.0) repeat-
end [rotate-x(1)]]] []]

Proc 1(n0, n1) :

n0 > 1.0 → forward(2) [Proc1(1.0,n1+1.0) [forward(1)] rotate-y(2) [
[] Proc 1(1.0,n1+1.0) [forward(1)]] Proc1(n0-2.0,n1-1.0)
[end-proc]]

n0 > 0.0 → rotate-y(1) [[] backward(n1) [end-proc []]]

Graphical versions of this design program are shown in Figures 1 and 2(a).

To generate the assembly procedure for this design program it is executed, starting
with the statementProc 0(4.0,2.0). This results in the following assembly
procedure:
rotate-z(1) [rotate-z(1) [rotate-y(1) [forward(3)
rotate-y(1) [forward(3) rotate-y(1) [forward(3)
rotate-y(1) [forward(3) rotate-x(1)]]]] []]
forward(1) [forward(1) [forward(2) [rotate-y(1)
[[] backward(3) [forward(1) []]] rotate-y(2)
[[] rotate-y(1) [[] backward(3) [forward(1)

10

(a) (b) (c)

Fig. 2. This figure contains: (a) a graphical version of an example design encoding; (b) the
assembly procedure it produces; and (c) the resulting design.

[]]]] forward(2) [rotate-y(1) [[] backward(2)
[forward(1) []]] rotate-y(2) [[] rotate-y(1) [
[] backward(2) [forward(1) []]]] forward(2) [
rotate-y(1) [[] backward(1) [forward(1) []]]
rotate-y(2) [[] rotate-y(1) [[] backward(1) [
forward(1) []]]] forward(1)]]] [] []] [] []]]

A table is constructed by starting with a single cube in an otherwise empty 3D grid
and then the assembly procedure is executed to add more cubesto the structure.
Cubes are added to this design with the operatorsforward() andbackward().
The current state, consisting of location and orientation,is maintained with the
addition of cubes resulting in a change in the current location, and there are three
operators,rotate-[x|y|z](), that change the current orientation in units of
90◦ about the appropriate axis. A branching in the assembly procedure results in
a split in the construction process with construction continuing with each child
subtree working with its own copy of the construction state.

A graphical version of this design program is shown in Figure2(a), along with
the corresponding assembly tree of design-construction operators, Figure 2(b), and
the resulting design, Figure 2(c). In the images of the design program and as-
sembly procedure, cubes represent labeled procedures and the calls to them, pyra-
mids represent control-flow operators, and construction operators are represented
by spheres.

This example design can be analyzed using the metrics ofMRH and the various
complexity measures. The program has six modules which are used a total of 17
times giving a modularity value of 6 for the encoding and a modularity value of
17 for the design. The size of the program is 30 symbols and thesize of the final
assembly procedure is 38 symbols giving a reuse value of 1.27, and it has five
levels of nested modules which gives a hierarchy value of 5. Its scores on the other
complexity measures are: an AIC of 30; a Design size of 38; a Logical Depth of
124; a Sophistication of 21; 13 build symbols; a grammar sizeof 2; a connectivity
of 5; 8 branches; and a height of 10.

11

(a) (b)

Fig. 3. Two of the best, and most structurally organized, of the evolved tables. The first
(a) was evolved in the20 × 20 × 20 design space and the second (b) was evolved in the
80 × 80 × 80 design space.

6.3 Evolutionary Algorithm

The EA used for these experiments is the Age-Layered Population Structure (ALPS)
[25]. Unlike a traditional EA, ALPS maintains several layers of individuals of dif-
ferent age levels and continuously introduces new, randomly generated individuals
into the first layer. It has been shown to work better than the canonical EA by better
avoiding premature convergence. The setup we use consists of 10 layers, each with
40 individuals. In each layer the best 2 individuals from theprevious generation are
copied to the current generation and then new individuals are created with a 40%
chance of mutation and 60% chance of recombination. Tournament selection with
a tournament size of 5 is used to select parents. In our experiments we run 15 trials
with each configuration and each trial is run for one million evaluations.

7 Results of the Empirical Test

To compare complexity andMRH metrics we performed a number of evolutionary
design runs on different sizes of a design problem. The design problem and evolu-
tionary algorithm were described in the previous section, and for these experiments
we evolved tables for four different grid sizes. Since we assume that as the design
space is increased in size more complex designs will be needed, we are looking for
complexity measures whose values scale up along with this increase.

Figure 3 contains images of two of the best and most structurally organized tables
that were evolved. The smaller table, Figure 3(a), was evolved in the20 × 20 × 20
design space and has a fitness of 582221 and the following scores: AIC of 913;
Design Size of 8007; Logical Depth of 10311; Sophisticationof 89; 811 build sym-
bols; a Grammar Size of 13; a Connectivity of 34; 1595 branches; a height of 155.
Its MRH scores are:Mp is 34,Md is 431;Ra is 8.8;Rb is 9.9;Rm is 12.7 and it has
anH of 8. The larger table, Figure 3(b), was evolved in the80 × 80 × 80 design
space and has a fitness of 600324286 and the following scores:AIC of 630; Design
Size of 9753; Logical Depth of 14365; Sophistication of 90; 529 build symbols; a

12

(a)

(b)

Fig. 4. A graphical rendition of the assembly procedures for constructing the two tables in
Figure 3. The assembly procedure in (a) produces a table for the 20x20x20 design space
and the assembly procedure in (b) produces a table for the 80x80x80 design space.

Grammar Size of 11; a Connectivity of 58; 1668 branches; and a height of 168. Its
MRH scores are:Mp is 20,Md is 2202;Ra is 15.5;Rb is 18.4;Rm is 110.1 and it has
anH of 9. While these scores give examples of the differences thatcan happen, a
better overall picture is gained from looking at the averagevalues from a number
of evolutionary runs on different sizes of the design problem.

Table 1 lists the average values over 15 trials of the different measures as applied
to the best tables evolved on different sizes of the design problem (20 × 20 ×

20, 40 × 40 × 40, 60 × 60 × 60, and80 × 80 × 80). As expected, the averaged
best fitness monotonically increases along with an increasein size of the design
space. The measures which have values that also monotonically increase in step
with an increase in size of the design space are: Design Size,Logical Depth,Md,
Rm, andH. Of these it is not surprising that Design Size increases with the size of
the design space and, given that the Design Size increases, it is also not surprising
that Logical Depth (a measure of the running time of the program that creates the
assembly procedure) also increases with size of the design space. Interestingly, the
information in a design, AIC, does not grow monotonically with size of the design
space or Design Size. In addition, none of the other measuresgrows monotonically
with the size of the design space except some of theMRH measures: the amount of
modularity in the design (Md), the reuse of modules (Rm) and hierarchy (H).

Of the three measures of reuse,Ra, Rb andRm, only modular reuse (Rm) monotoni-
cally increases with the size of the design space and the fitness of the best designs.
This suggests that the type of reuse that is useful is not overall reuse (Ra) or reuse
of build symbols (Rb), but the reuse of modules. By extension, this also suggests
that those design representations which do not have the ability to hierarchically as-
semble and reuse modules (such as artificial genetic regulatory networks [26]) will
not scale well.

Of the two modularity measures,Md monotonically increased along with the in-
crease in fitness and size of the design space whereasMp was higher in the20 ×

13

203 403 603 803

Fitness (×106) 0.56 18.1 123 440

AIC 719 768 680 775

Design Size 6769 9499 9739 9944

Logical Depth 9541 13421 14376 18011

Sophistication 79.9 70.53 74.0 85.4

Number of Build Symbols 626 684 593 676

Grammar Size 13.5 13.2 12.5 13.5

Connectivity 33.7 25.2 26.4 37.3

Number of Branch Nodes 1653 2087 1905 1825

Height 118 145 276 220

Modularity (Mp) 27.5 26.1 30.8 31.1

Mod. in Design (Md) 377 547 1133 1329

Reuse (Ra) 12.1 14.0 16.6 15.7

Reuse of Build Symbols (Rb) 15.2 16.2 19.6 18.5

Reuse of Modules (Rm) 15.2 21.8 37.4 50.1

Hierarchy (H) 7.53 7.7 8.0 8.6
Table 1
A comparison of the resulting scores on the different metrics of the best tables evolved with
the different representations. Results are the average over 15 trials.

20×20 space than in the40×40×40 space. SinceMd is a product of the number of
modules in a design program (M) and the amount of reuse of these modules (Rm),
it may be a more reliable measure of “complexity” because it is a product of two
separate aspects: modularity and modular reuse. This suggests that measuring mod-
ularity alone is not a good overall measure of the complexityof an object and that
combining the measures of all three characteristics of MR&H into a single measure
may result in an even better measure of an object’s structureand organization.

Table 2 contains the scores for the different measures of structure and organization
(SO) on the best design programs evolved for different sizes of the design prob-
lem. Of these eight measures of structure and organization,neitherSO1 andSO5

increase monotonically along with the size of the design space. Since both of these
use overall reuse and not modular reuse this suggests that modular reuse is more
important than overall reuse. The other six measures of structure and organization
do increase monotonically and, of these six, the four measures of structure and or-
ganization which use modular reuse (Rm) seem to scale better than those that use
overall reuse (Ra).

14

203 403 603 803

Fitness (×106) 0.56 18.1 123 440

SO1: −−−→MRaH 31.3 31.1 37.1 37.1

SO2: −−−→MRmH 34.0 36.0 51.6 64.4

SO3: M×Ra×H 2013 2872 3708 4019

SO4: M×Rm×H 2889 4324 8643 11207

SO5: M×Ra×H
AssemSize

0.31 0.31 0.38 0.40

SO6: M×Rm×H
AssemSize

0.42 0.46 0.89 1.13

SO7: M×Ra×H / AIC 3.22 4.68 6.75 6.77

SO8: M×Rm×H / AIC 4.59 6.87 15.4 19.3
Table 2
Different ways of combiningMRH scores to produce a single measure of structure and
organization.

Overall, we conclude that the measures which pass the empirical test for this design
problem are AIC, Design Size, Logical Depth,Md, Rm, H, SO2, SO3, SO4, SO6,
SO7, andSO8. Certainly there are limitations with any empirical test – inthis par-
ticular one biases are introduced from such things as constraints on the maximum
size of our design program and on the particular design problem we chose. While
doing more empirical tests on different design problems using different automated
design systems can improve the reliability of this test, another approach is to eval-
uate a complexity measure on an abstract object-construction example.

8 Object Construction Test

One shortcoming with some measures of complexity, such as AIC, is that they are
not very intuitive. We can examine how intuitive these measures of structure and
organization are by testing them on abstract object-construction examples. First,
consider the AIC of an algorithmically random bit string, bywhich is meant one
with no regularities. Since the string has no regularities it cannot be compressed,
so its AIC is the size of the string plus the overhead necessary for the print
operator. Compare this to theMRH and structure and organization values of this

15

string: its modularity value is 0, since it has no modules, its reuse value is 1, since
there are no reused symbols, and its hierarchy value is 0, since there is no modules
to be nested. Using these values, its various structure and organization values (SO1

. . .SO8) are: 1, 1, 0, 0, 0, 0, 0, and 0. These values of 0 and 1 for the measures of
MRH and structure and organization match our intuition that a random string does
not have a sophisticated structure.

We can also compare how the different complexity measures scale as we scale
the size of the random string. For AIC, Design Size and LogicalDepth – the three
measures that passed the empirical test of Section 7 – they all produce a complexity
value oflength(A) + k, for stringA, wherek is the overhead for performing the
printing. These scores imply that longer random strings aremore complex than
shorter ones. In contrast, theMRH andSOmeasures all produce the same complexity
measure of 0 or 1 for any random string: more randomness is notmore complexity.

Next, consider what happens to the different complexity values when an object,
A1, is joined to itself to form a new object,A2. In this case the design program
of the new object,A2, would be the same as for the original object, plus the mod-
ule,A2 = A1 + A1. As a result of this new module, the hierarchy ofA2 would be
H(A1) plus 1 and the modularity would beMp(A1) plus 1. Depending on the AIC
of A1, the amount of reuse will be up to a factor of 2 larger for the new object since
Ra(A2) = DS(A1)+DS(A1)+k

AIC(A1)
, wherek is the size of adding the new module and

DS(A) is the Design Size ofA. As a result of these changes inMRH, the structure
and organization values ofSO5 throughSO8 should be only slightly larger, but
those ofSO3(A2) andSO4(A2) will be roughly double that ofA1. Consider what
happens to other scores of complexity: AIC, Sophistication and Grammar Size in-
crease slightly but Logical Depth doubles. SinceA2 is just two copies ofA1, it is
not clear that it should have twice the complexity ofA1, thus we conclude that mea-
suresSO5 throughSO8 scale intuitively, whereasSO3(A2), SO4(A2) and Logical
Depth do not scale intuitively on this example.

Similarly, consider the case in which two completely different objects,A1 andA3,
with the same complexity andMRH scores, are combined to form a new object,A4:
A4 = A1 + A3. In this case the new module results in the hierarchy of the new
object being one plus the hierarchy of either of its component objects:H(A4) =
H(A1) + 1 = H(A3) + 1. The modularity of this new object is equal to one plus
the sum of its to component objects:M(A4) = Mp(A1) + Mp(A3) + 1. Whereas both
modularity and hierarchy increase, this new object has a reuse slightly less than
both of its component objects since the size of the design isDS(O1) + DS(O3)
but the size of the design program isAIC(O1) + AIC(O3) plus some additional
symbols for specifyingA4 = A1 + A3. 1 ThusSO3 andSO4 would be (roughly)

1 To be precise, the design programs for bothA1 andA3 have a starting rule, one of these
is kept and is changed to call the new rule,A4 = A1 + A3, and the other starting rule is
deleted so the AIC ofA4 is only a couple of symbols larger thanAIC(A1) + AIC(A3).

16

double in value forA4 as they are forA1 andA3, but SO5 throughSO8 would
change little since both AIC and design size would also (roughly) double in size.
Not only would AIC forA4 be roughly double that of eitherA1 or A3, but so would
Logical Depth, Sophistication, and Grammar Size. Just as combining an object with
itself does not seem like it should lead to a doubling in complexity, neither does it
seem that combining two completely different objects with the same complexity
should lead to a doubling of complexity. Thus, as with the previous example, we
find that the more intuitive measures of complexity areSO5 throughSO8.

To summarize the results of these three object-construction examples we can state
some desirable properties of a measure of complexity:

1: The complexity value of a random string should be small.
2: The complexity value of an object joined to itself should be no more than slightly

larger than that of the original object.
3: The complexity value of two objects joined together should not be smaller than

the lesser value of the two original objects and should not bemuch larger than
the greater value of the two original objects.

Using these principles, and the results of the experiments in Section 7, the best
measures of complexity areSO6 andSO8.

9 Discussion

One issue that has not yet been addressed in this paper is thatmultiple design pro-
grams can generate the same object. A common method for handling this is to
take measurements on the shortest program that generates the object, as is done for
AIC, or on a near minimal program, as is done for Logical Depth.Both of these
approaches are valid and can be used for producing objectiveMRH and structure
and organization measures of an object. At least for theoretical analysis this works
fine, but for actual real-world objects it becomes somewhat problematic.

Given an object, along with the CAD/CAM files that make up its design, how does
one measure its complexity? It can be impractical to create the minimal program,
so performing measurements on the design program that was developed is not
only a pragmatic solution but it has other advantages. Designs typically go through
multiple revisions regardless of whether they were produced manually or evolved
through a natural or artificial system, and the resulting design program captures part
of this revision process. Similarly, a design program can bethought of as a point
in the design space with a neighborhood of designs that are near it with minimal
changes. Different design programs for the same object willhave a different neigh-
borhood of designs that are easily reachable. Measuring thecomplexity of an object
by measuring the actual design program that was developed for it may be useful in

17

capturing something about how it was designed or where it is in the greater design
space.

Finally, for an automated design system to be able produce designs with certain
types and levels of complexity it must have a representationcapable of encoding
such designs and a search algorithm that can take advantage of the representation.
For example, for an automated design system to be able produce designs with cer-
tain types and levels of complexity it must have a representation capable of encod-
ing such designs. In the empirical experiments, the representation we used is a kind
of computer program with combination, abstraction and control-flow implemented
in a particular way. With a different representation one or more of MR&H, or some
other type of design characteristic, may not be possible. Inthis case, on an empir-
ical comparison the measured amount of that characteristicwould be the same for
all designs so it would not fail the empirical test. Unfortunately, we cannot make
strong guarantees on the performance of the search algorithm so we cannot ex-
pect the empirical test to be completely reliable, and hencethe need for evaluating
complexity measures on abstract object-construction scenarios.

10 Conclusion

To develop better complexity measures, a reasonable approach is to base them on
those principles of design that designers use. Modularity,reuse and hierarchy have
been identified by engineers as useful principles for designing complex systems,
and these characteristics can be seen in Nature. Here we developed measures for
each of MR&H, and also used these three measures to develop several measures of
structure and organization.

To evaluate our proposed complexity measures we compared them against existing
complexity measures on two different tests. Working with the hypothesis that in
scaling the size of a design problem more complex solutions are required to solve
it, we performed an empirical comparison of different complexity measures using
an evolutionary algorithm to evolve solutions to differentsizes of a design prob-
lem. Of the pre-existing complexity measures, only Design Size and Logical Depth
produced values that monotonically increased with the scaling of the problem. Of
the measures proposed in this paper, modularity in the design (Md), reuse of mod-
ules (Rm) and hierarchy (H) all scaled appropriately, as did most of our measures of
structure and organization. In addition, we proposed threedesirable properties of
a complexity measure: random designs score low; combining an object with itself
should result in, at most, a small increase in complexity; and combining two objects
with the same complexity should result in the new object having a complexity that
is, at most, a small increase in complexity of its two components. While none of
the existing measures of complexity meet all three of this criteria, two measures of
structure and organization meet them as well as pass the empirical test. As a result,

18

we conclude that the best measures of complexity are the two measures of structure
and organizationSO6 andSO8. These two measures are the product of multiplying
the MR&H measures together, and then normalizing by either dividing by AIC (for
SO6) or by dividing by the design size (forSO8).

The measures we have proposed in this paper are a first attemptat constructing
complexity measures based on principles of design. Future work in developing bet-
ter complexity measures may use different methods for measuring MR&H, com-
bine them in different ways, or use other design characteristics. Regardless of how
new complexity measures are developed, we advocate that they are validated both
empirically and on abstract object-construction scenarios.

References

[1] G. J. Chaitin. On the length of programs for computing finite binary sequences.
Journal of the Association of Computing Machinery, 13:547–569, 1966.

[2] A. N. Kolmogorov. Three approaches to the quantitative definition of information.
Problems of Information Transmission, 1:1–17, 1965.

[3] R. J. Solomonoff. A formal theory of inductive inference.Information and Control,
7:1–22,224–254, 1964.

[4] C. H. Bennett. On the nature and origin of complexity in discrete, homogenous,
locally-interacting systems.Foundations of Physics, 16:585–592, 1986.

[5] M. Koppel. Complexity, depth and sophistication.Complex Systems, 1:1087–1091,
1987.

[6] C. C. Huang and A. Kusiak. Modularity in design of products and systems. IEEE
Transactions on Systems, Man, and Cybernetics, Part A, 28(1):66–77, 1998.

[7] B. Meyer. Object-oriented Software Construction. Prentice Hall, New York, 1988.

[8] K. Ulrich and K. Tung. Fundamentals of product modularity. InProc. of ASME Winter
Annual Meeting Symposium on Design and Manufacturing Integration, pages 73–79,
1991.

[9] H. A. Simon. The Sciences of the Artificial. MIT Press, Cambridge, MA, 1969.

[10] G. S. Hornby.Generative Representations for Evolutionary Design Automation. PhD
thesis, Michtom School of Computer Science, Brandeis University, Waltham, MA,
2003.

[11] G.S. Hornby. Functional scalability through generative representations: the evolution
of table designs.Environment and Planning B: Planning and Design, 31(4):569–587,
July 2004.

19

[12] M. Goldwasser, J.-C. Latombe, and R. Motwani. Complexity measures for assembly
sequences. InProc. IEEE Intl. Conf. on Robotics and Automation, pages 1581–1587,
Minneapolis, MN, April 1996.

[13] J.-Y. Girard. Proof Theory and Logical Complexity, volume 1. Elsevier Science
Publishing Company, New York, NY, 1987.

[14] J. S. Kelly. Social choice and computational complexity.Journal of Mathematical
Economics, 17(1):1–8, February 1988.

[15] G. L. Baker and J. P. Gollub.Chaotic Dynamics: An Introduction. Cambridge
University Press, Cambridge, UK, second edition, 1996.

[16] B. Edmunds. Syntactic Measures of Complexity. PhD thesis, Dept. of Philosophy,
University of Manchester, 1999.

[17] C. C. H. Adami and N. J. Cerf. Complexity, computation, and measurement. In
T. Toffoli, M. Biafore, and J. Leao, editors,Proc. 4th Workshop on Physics and
Computation, pages 7–11, Boston, MA, November 1996.

[18] B. R. Gaines. On the complexity of causual models.IEEE Transactions on Systems,
Man and Cybernetics, 6:56–59, 1976.

[19] S S. Lloyd and Pagels. Complexity as thermodymanic depth.Annals of Physics,
188:186–213, 1988.

[20] V. H. Yngve. A model and an hypothesis for language structure. In Proceedings of the
American Philosophical Society, pages 444–466, 1960.

[21] B. K. Rosen. Syntactic complexity.Information and Control, 24:305–335, 1974.

[22] K. A. De Jong.Evolutionary Computation: A Unified Approach. MIT Press, 2006.

[23] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.
Springer-Verlag, Berlin, third edition, 2000.

[24] G. S. Hornby and J. B. Pollack. The advantages of generative grammatical encodings
for physical design. InCongress on Evolutionary Computation, pages 600–607. IEEE
Press, 2001.

[25] G. S. Hornby. ALPS: The age-layered population structure for reducing the problem
of premature convergence. In M. Keijzer et al., editor,Proc. of the Genetic and
Evolutionary Computation Conference, GECCO-2006, pages 815–822, New York,
NY, 2006. ACM Press.

[26] S. Kumar and P. J. Bentley.On Growth, Form and Computers. Elsevier Academic
Press, 2003.

20

